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Abstract We propose a measure of audiovisual speech in-
tegration that takes into account accuracy and response
times. This measure should prove beneficial for researchers
investigating multisensory speech recognition, since it re-
lates to normal-hearing and aging populations. As an exam-
ple, age-related sensory decline influences both the rate at
which one processes information and the ability to utilize
cues from different sensory modalities. Our function as-
sesses integration when both auditory and visual information
are available, by comparing performance on these audiovi-
sual trials with theoretical predictions for performance under
the assumptions of parallel, independent self-terminating
processing of single-modality inputs. We provide example
data from an audiovisual identification experiment and dis-
cuss applications for measuring audiovisual integration skills
across the life span.
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A topic of considerable interest in the speech recognition
literature concerns how to measure multisensory integration.
Multisensory integration refers to the ability to benefit from
visual speech cues over and above the auditory signal by
integrating and effectively combining the two sources of
information in support of speech perception. The basic

methodology for assessing multisensory integration has
typically involved determining whether responses to au-
diovisual (AV) speech stimuli differ systematically from
a function of the responses to the auditory- and visual-only
components.

Neuroimaging studies, for instance, have measured blood
oxygen level dependent responses to AV speech stimuli in
brain regions of interest and have compared them with the
maximum unisensory response (max{A,V}) or the sum of the
auditory and visual responses (A + V; e.g., Calvert, Campbell,
& Brammer, 2000; Stevenson & James, 2009; Werner &
Noppeney, 2010). Likewise, EEG studies have compared
peak amplitudes for event-related potentials (ERPs), such as
the N100, evoked by auditory and visual stimuli and AV
stimuli. Studies have sought to establish evidence for “inte-
gration” when the AV peak amplitude systematically differs
from the unisensory ERPs (e.g., AVERP < AERP + VERP; e.g.,
Altieri & Wenger, 2013; Besle, Fort, Delpuech, & Giard,
2004; van Wassenhove, Grant, & Poeppel, 2005; Winneke
& Phillips, 2011; cf. Teder-Sälejärvi, McDonald, Di Russo, &
Hillyard, 2002, for issues concerning anticipatory responses).
The logic is that if the multisensory ERP differs statistically
from the sum of unisensory ERPs, there is evidence for
interactions across modalities and, hence, integration.

Similar logic applies to behavioral measures (accuracy and
latency) of AV integration. The question with respect to these
measures is whether AV response times (RTs) are shorter or
accuracy is greater than on single-modality trials. With respect
to the question of whether integration does or does not occur,
the question becomes whether AV responses differ from a
function of the unisensory responses in such a way as to
suggest a violation of independence. A preponderance of
studies in the AV speech literature, beginning with Sumby
and Pollack’s (1954) seminal study, have used mean accuracy
to assess the extent one benefits from being able to see a
talker’s face in noisy listening conditions. Within the domain
of RTs, a growing number of studies have used distribution-
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based measures to assess visual benefit (Altieri & Townsend,
2011;Winneke&Phillips, 2011). However, a unifiedmeasure of
integration that utilizes both RT and accuracy has rarely been
implemented and, to our knowledge, has never been used to
assess speech integration. We seek to accomplish that here.1

We now introduce a nonparametric measure that assesses
performance relative to the predictions of what can be con-
sidered a null hypothesis for AV integration: specifically, a
model that assumes that the auditory and visual inputs are
processed independently and in parallel and that a response
can be emitted as soon as either input provides information
sufficient for a response (i.e., a parallel independent race
model; see Townsend & Nozawa, 1995). Such a model by
definition assumes that the auditory and visual modalities do
not interact.

Accuracy and response time measures

AV enhancement has often been measured by comparing AV
accuracy with auditory-only or, less commonly, visual-only
accuracy (e.g., Bergeson & Pisoni, 2004; Erber, 1969; Sumby
& Pollack, 1954). The measure of visual gain, for instance,
has been employed to measure the relative benefit afforded by
the visual signal over and above that provided by auditory-
only speech information (see Bergeson & Pisoni, 2004;
Sumby & Pollack, 1954). Gain is computed by obtaining
the mean accuracy in the AV condition and for trials in which
only auditory information is available and computing the ratio
AV−A
100−A . Here, AV denotes percent correct on AV trials, A repre-

sents the percent correct on auditory-only trials, and V is
percent correct on visual-only trials. The predicted AV accu-
racy, assuming independence between auditory and visual
modalities (i.e., without integration occurring), is given by
the probability: p(AV)=p(A)+p(V) – p(A) * p(V). In this
equality, p(A) denotes the observed probability correct for
auditory-only trials, p(V) for visual-only trials, and p(AV)
denotes the predicted probability correct on AV trials. The

accuracy and gain measures have been utilized in several
studies assessing speech integration in normal hearing, as well
as aging and clinical populations with either sensory or cog-
nitive deficits (Bergeson & Pisoni, 2004; Erber, 2002; Grant,
Walden, & Seitz, 1998; Massaro, 2004; Ross, Saint-Amour,
Leavitt, Javitt, & Foxe, 2007; Sommers, Tye-Murray, &
Spehar, 2005).

With respect to measures based on RT, integration has
been assessed by computing a measure from the redundant-
targets literature known as the race model, or Miller’s in-
equality. This inequality is constructed using the empirical
cumulative distribution functions (CDFs) for RTs in each of
the different classes of trials: FA(t)+FV(t) – FAV(t)≥0 , where
FA(t) and FV(t) are the CDFs for the auditory-only and
visual-only trials, respectively, and FAV(t) is the CDF for
the AV trials (e.g., Altieri & Townsend, 2011; Besle et al.,
2004; Winneke & Phillips, 2011). Violations of this inequal-
ity (i.e., values <0) may be interpreted as evidence of facil-
itative auditory–visual interactions, a form of parallel pro-
cessing known as coactivation (for discussions, see, e.g.,
Colonius & Townsend, 1997; Miller, 1982; Townsend &
Nozawa, 1995), or integration of the auditory and visual
inputs.

Altieri and Townsend (2011) extended the RT-based ap-
proach by characterizing integration in terms of the construct
of capacity (e.g., Townsend & Ashby, 1978; Townsend &
Nozawa, 1995). The capacity coefficient allows one to com-
pare processing times from trials where both auditory and
visual information are availablewith RTs obtained from
auditory- and visual-only trials using parallel race model
predictions as a benchmark.2 This characterization of capacity
is based on the distributions of RTs, rather than a single
moment of the distribution (e.g., the mean) and, as such,
provides increased sensitivity and precision (see relevant dis-
cussions in, e.g., Townsend & Ashby, 1978, 1983; Townsend
& Wenger, 2004; Wenger & Gibson, 2004; Wenger, Negash,
Petersen, & Petersen, 2010). Capacity is constructed by
obtaining the empirical CDF of the RTs [F(t)] in each condi-
tion and transforming it into the integrated hazard function by
this identity: H(t)=−log[1 − −F(t)]. The latter identity facili-
tates estimation of the latent underlying integrated hazard
function, since the term, −log[1−F(t)], is straightforward to
estimate (see, e.g., Altieri & Townsend, 2011; Townsend &
Nozawa, 1995).

This function can be interpreted in terms of the cumula-
tive amount of work done or energy expended by time t in
each of the three trial conditions (Townsend & Ashby, 1978,

1 Interestingly, procedures have been introduced in the RT literature to
correct for “fast guesses” that tend to occur at the tail end of the RT
distribution (see, e.g., Eriksen, 1988; Gondan & Heckel, 2008; Miller &
Lopes, 1991; see also Pachella, 1974, for a combined treatment of RTs and
accuracy). A certain proportion of fast guesses is assumed to be correct
simply by chance and may introduce a bias that inflates redundancy gain
due to overestimation of the CDF (Eriksen, 1988). Some suggested correc-
tion methods include obtaining RT estimates from incorrect responses and
subtracting it from a proportion of correct responses, or alternatively,
trimming the tail end of the RT distributions (Rach et al., 2010). These
procedures for correcting CDFs may be used to estimate the hazard func-
tions shown in the capacity equations in the following section (see Eq. 1).
Still, this methodology differs from the logic introduced in the following
section, in which obtained accuracy is included directly in the integration
assessment function.

2 This class of parallel models assumes that, on average, the speeds of
individual channels are not affected by whether or not other channels
are in operation—thus, unlimited capacity. The classical independent
race model is a special case of unlimited capacity channels, which
further assumes stochastic independence across channels.
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1983; Townsend & Nozawa, 1995; Townsend & Wenger,
2004). Thus, with this index of cumulative work, it is possi-
ble to compare the total amount of work done on the AV
trials at each point in time with the combined cumulative
work done on the auditory-only and visual-only trials using a
capacity coefficient (Altieri & Townsend, 2011; Townsend
& Nozawa, 1995; Townsend & Wenger, 2004):

C tð Þ ¼ HAV tð Þ
HA tð Þ þ HV tð Þ : ð1Þ

Since C(t) is a ratio, three possible outcomes emerge
(Townsend & Eidels, 2011; Townsend & Nozawa, 1995;
Townsend & Wenger, 2004). First, capacity can be greater
than 1 at a specific point in time, indicating faster responses on
AV trials, as compared with race model predictions derived
from auditory- and visual-only trials. If this occurs, integration
is said to be efficient, suggesting supercapacity, because re-
sponses in the AV condition are faster than independent race
model predictions. Second, C(t) can be less than 1. This
indicates inefficient or limited capacity integration due
to longer RTs in the AV condition, as compared with
predictions from the A-only and V-only conditions. Third,
C(t) can be equal to 1 at time t. This would indicate that AV
processing is just as efficient as processing auditory or visual
inputs alone and would be interpreted as unlimited capacity
integration.3

A critical strength of the capacity coefficient is that it can
be formally related to other distribution-based measures
relative to capacity (see Townsend & Eidels, 2011, for a
unifying discussion). In particular, the values of C(t) can be
related to known upper and lower limits, under assumptions
of independence, such that values of C(t) that exceed these
bounds guarantee departures from unlimited capacity pro-
cessing. Deviations from unlimited capacity processing (un-
der the assumption of parallel independent channels) could be
produced by inhibitory or excitatory cross-modal interactions
(which we would predict for multisensory integration). Such
interactions could be due to temporal correlations between
processing times, such as might be the result of attentional
allocation strategies in difficult listening conditions. For ex-
ample, the participant may concentrate on the A modality
when useful and on the V modality when useful, thereby
inducing negative channel correlation causing C(t)>1 (see,
e.g., Colonius, 1990; Colonius & Vorberg, 1994; Mordkoff &

Yantis, 1991). Efficient allocation of attention could produce
supercapacity, since the listener “knows”when to tune into the
visual modality for complementary cues, and also when to
ignore it. Selectively attending to only one modality—say, the
auditory—while completely ignoring the visual would nor-
mally cause C(t)<1. This is because AV trials would yield
similar RTs to the auditory-only condition. Finally, deviations
could also exist because of different processing architectures,
such as serial or coactive (Townsend & Nozawa, 1995;
Townsend & Wenger, 2004).

The capacity coefficient presented in Eq. 1 assumes
that the RTs used for estimation are all observed on
trials on which a correct response was generated. This
is a standard assumption in the treatment of RT data.
However, by definition, it excludes information about
response accuracy. For both theoretical and applied rea-
sons, it would be beneficial to have a characterization
that takes into account both accuracy and latency infor-
mation (e.g., Ratcliff, Thapar, & McKoon, 2004) and the
ability to obtain information from the signal appear to be
adversely affected by the aging process and/or diminished
sensory acuity.

Combining response time and accuracy

In this section, we introduce the (capacity) integration as-
sessment measure, C_I(t), which takes into account both
RTs and accuracy; like the RT-only measure, C_I(t) is
distribution-free and nonparametric. We show that incor-
porating both speed and accuracy into a capacity measure
is a nontrivial exercise requiring modified F(t) distribution
functions.

The combined use of RT and accuracy is based on a
foundational logic similar to that used in Eq. 1, because
performance on AV trials is compared with independent race
model predictions. The details and underlying theory for the
RT and accuracy approach can be found in Townsend and
Altieri (2012), and the logic is as follows. Suppose a listener is
presented with an AV stimulus. The listener can correctly
identify the word if he or she correctly identifies the auditory,
visual, or both auditory and visual information by a certain
time (e.g., Altieri & Townsend, 2011). The probability that
they correctly identify the target word in the auditory or visual
input by some time t can occur through the following sum of
likelihoods, shown in Eq. 2: being correct on A at or before
time t while being incorrect on V, being correct on V at or
before time twhile being incorrect on A, being correct on A at
or before time t and correct onV (while recognition has not yet
occurred on V), being correct on V at or before time t
and correct on A (while recognition has not yet occurred
on A), and being correct and complete on both A and V by
time t.

3 The observed F(t)s are assumed to include a residual motor compo-
nent. One way in which this residual component has been dealt with in
the literature is to assume the existence of a base time distribution that is
convolved with processing time. Potential effects that base processing
time may have on observed capacity have been discussed by Townsend
and Honey (2007).
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∫
0

t

PAV TAVC ¼ t0∩t0 < TAVIð Þdt0 ¼ ∫
0

t

PA TAC ¼ t0∩t0 < TAIð Þdt0*PV Ið Þ þ ∫
0

t

PV TVC ¼ t0∩t0 < TVIð Þdt0*PA Ið Þ

þ ∫
0

t

PA TAC ¼ t0∩t0 < TAIð Þdt0* ∫
t0¼t

∞

PV TVC ¼ t0∩t0 < TVIð Þdt0

þ ∫
0

t

PV TVC ¼ t0∩t0 < TVIð Þdt0* ∫
t0¼t

∞

PA TAC ¼ t0∩t0 < TAIð Þdt0

þ ∫
0

t

PA TAC ¼ t0∩t0 < TAIð Þdt0*∫
0

t

PV TVC ¼ t0∩t0 < TVIð Þdt0 ð2Þ

Eq. 2 appears complex, but it is actually very manageable.
Each term is approximately identical to a cumulative distri-
bution (frequency) function, F(t), that can be obtained from
RT data from A-only, V-only, and AV trials. Consider

the following term from Eq. 2: ∫
0

t

PA TAC ¼ t0∩t0 < TAIð Þdt0 .
This denotes the empirical CDF from A-only trials on which
the participant responds correctly (since the correct process
reaches threshold before the incorrect one does), weighted by
the overall probability of being correct on those trials. Here,
the integral indicates a cumulative value from time 0 to time t.
The result is similar to a CDF, but instead of summing to 1,
it integrates to the probability correct on A-only trials.
Specifically, PA(‘ ‘) in the integral denotes the proba-
bility of being correct by a certain time t on A-only
trials (in which the time to process the correct word,
TAC , is faster than the time to process the incorrect
word, TAI).

Consider another term ∫
t0¼t

∞

PV TVC ¼ t0∩t0 < TVIð Þdt0 . This
term is equal to the probability that the listener will make a
correct V-only identification of the stimulus by time t weight-
ed by the probability correct on visual-only trials but that a
correct response has not been made by time t. This term is
similar to 1−F(t) (the probability that processing has not
finished by a certain time), except that it begins at the overall

probability correct on visual-only trials instead of 1. PV(‘ ‘)
denotes the probability of being correct on V-only trials
(again, the probability that the word actually presented, TVC,
is recognized in the visual domain before an incorrect word,
TVI). Finally, the same is true for PAV(‘ ‘), which represents the
probability of being correct on AV trials. Lastly, the terms
PA(I) and PV(I) denote the probability of being incorrect on
auditory- and visual-only trials, respectively. Similar to the
original capacity coefficient, obtaining estimates of these
terms from empirical data is relatively straightforward (see
the Appendix).

Computing the integration coefficient (Eq. 3) involves
obtaining the logarithm of each term in Eq. 2 and then
dividing the independent model prediction derived from
unisensory trials in the numerator by the observed AV data,

∫
0

t

PAV TAVC ¼ t0∩t0 < TAVIð Þdt0 , in the denominator. Faster

and more accurate responses on AV trials, as compared with
A- and V-only trials, yield values larger than 1, which im-
plies increasingly efficient and accurate integration. If the
accuracy weightings are all allowed to go to 1, then Eq. 2
becomes Eq. 3, the original capacity function showing that
C(t) is a special case of the more general integration assess-
ment function; specifically, C(t) constitutes a special case of
C_I(t) in which no errors are made and incorrect categories
are not accounted for in the race.

C I tð Þ ¼

log

∫
0

t

PA TAC ¼ t0∩t0 < TAIð Þdt0 *PV Ið Þ þ ∫
0

t

PV TVC ¼ t0∩t0 < TVIð Þdt0*PA Ið Þ

þ∫
0

t

PA TAC ¼ t0∩t0 < TAIð Þdt0 * ∫
t0¼t

∞

PV TVC ¼ t0∩t0 < TVIð Þdt0 þ ∫
0

t

PV TVC ¼ t0∩t0 < TVIð Þdt0* ∫
t0¼t

∞

PA TAC ¼ t0∩t0 < TAIð Þdt0

þ ∫
0

t

PA TAC ¼ t0∩t0 < TAIð Þdt0*∫
0

t

PV TVC ¼ t0∩t0 < TVIð Þdt0

2
6666666666666664

3
7777777777777775

log ∫
0

t

PAV TAVC ¼ t0∩t0 < TAVIð Þdt0
� � ð3Þ
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For purposes of illustration, Table 1 shows a truth table
corresponding to the accuracy values assuming an OR deci-
sion rule. In the next section, we illustrate the use of the
integration assessment function (Eq. 3) with data from one
example participant in an AV speech identification study that
measured integration efficiency under variable listening con-
ditions (Altieri, 2011).

Example data: Application across different sensory
Conditions

The C_I(t) measure provides information about whether
deviations were observed from independent model predic-
tions at each point of the RT distribution (i.e., for both fast
and slow responses). Critically, these deviations could be the
result of either faster or slower AV processing speed, higher
or lower AVaccuracy, or a combination of RT and accuracy.
For diagnostic purposes, we suggest the strategy of also
computing C(t) to determine whether AV RT influenced
redundant target performance, and also computing accuracy
scores (auditory, visual, and AV) to examine whether differ-
ences between predicted and obtained AVaccuracy may have
influenced performance. We provide MATLAB code in the
Appendix to illustrate the computation of these measures.

The example task required participants to make eight-
alternative forced choice identification responses to mono-
syllabic spoken words, by way of a buttonpress response on
a keyboard (Altieri, 2011; see also Altieri & Townsend,
2011, for methods). The numeric keys 1–8 (top row of a
standard keyboard) were labeled with high-frequency mono-
syllabic words, and participants became acquainted with
their arrangement during a practice session at the beginning of
each block. The set of words included “boat,” “date,” “gain,”
“mouse,” “page,” “job,” “shop,” and “tile.” The videos were of
two female talkers from the Hoosier Multi-Talker Database.
Accuracy and RTs were obtained in AV, auditory (A), and
visual-only (V) blocks.4 Listeners were presented with three
auditory S/N ratios (clear, −12 dB, and −18 dB SPLmixed with
white noise) to investigate the effects that variable listening

conditions have on AV integration. A total of 240 trials were
obtained in each condition in separate blocks (AVClear, AV−12,
AV−18, AClear, A−12, A−18, and V-only blocks).

The C(t) and C_I(t) results are shown for the example partic-
ipant in Fig. 1. The results for the RT-only measure of capacity
(Eq. 1) for each auditory S/N ratio are shown in the left panel.
The results for C_I(t) (Eq. 3) are shown in the right panel. The
presentation of both C(t) and accuracy scores allows one to
separately analyze the contribution of RT and accuracy on effi-
ciency. Each point indicates theC(t) andC_I(t) value across each
time point for three auditory S/N ratios. The results suggest that
efficiency, in terms of speed and accuracy, improved in the AV
condition, as compared with the unisensory conditions, as the
auditory signal became increasingly degraded. In the clear audi-
tory condition, the results showed, not surprisingly, that the visual
information failed to have any facilitatory effect either on speed
or on accuracy. This is evidenced by the fact that C(t) and C_I(t)
were considerably less than 1 for a large range of RTs.

Table 2 shows the accuracy scores from each condition
and each auditory S/N ratio (A and AV), as well as the race
model predictions (A+V−AV). Visual-only accuracy was
69 % correct. When the auditory S/N ratio was clear, the
obtained AV accuracy was nearly identical to race model
predictions. However, in the −12- and −18-dB conditions,
obtained AV scores were greater than race model predictions
for accuracy: p(AV)=p(A)+p(V) – p(A) * p(V).

The RT results (Eq. 1) in the left panel indicate inefficient
integration when the auditory S/N ratio was clear [C(t)<1].
This is due to the fact that the listener failed to benefit from
visual information under optimal listening conditions. The
integration coefficient in the right panel (Eq. 3) was similar
to C(t) [i.e., C_I(t)<1]. Since the obtained AV accuracy
approximated race model predictions, the decrement in effi-
ciency observed in both panels results from a slowdown,
relative to independent race model predictions.

Table 1 The left column (“Auditory”) indicateswhether the stimulus word
(i.e., “Correct”) is recognized first in the race or whether an incorrect is (i.e.,
“Incorrect”). The second column shows the same for the visual modality.
The third column, labeled “Winner,” indicates whether recognition first
occurs in the auditory or visual modality. Finally, the fourth column, labeled
“Accuracy,” indicates the accuracy of the response given the information in
the other columns

Auditory Visual Winner Accuracy

Correct Correct Auditory Correct

Correct Correct Visual Correct

Correct Incorrect Auditory Correct

Correct Incorrect Visual Incorrect

Incorrect Correct Auditory Incorrect

Incorrect Correct Visual Correct

Incorrect Incorrect Aud./Vis. Incorrect

4 One reason a block design was implemented, rather than a mixed
design, was to maximize ecological validity. The number of modalities
available does not typically change suddenly in everyday conversation.
For example, listeners must regularly communicate in environments that
are auditory-only, such as the telephone. We also point out that previous
AV speech research has compared early neural measures of integration
(e.g., N1/P2) along with behavioral measures in a block versus mixed
design and has not obtained significant differences (van Wassenhove
et al., 2005; see Bergeson & Pisoni, 2004; Sommers et al., 2005; and
Winneke & Phillips, 2011, for other examples of block designs in AV
speech tasks). Finally, since the experimental trials are presented in
blocks, probabilistic contingencies (Mordkoff &Yantis, 1991), which
could facilitate or inhibit capacity levels, were likely avoided.
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For the lower auditory S/N ratios, processing speed regularly
violated race model predictions [C(t)>1]. In fact, as auditory
listening conditions deteriorated from −12 to −18 dB, integra-
tion efficiency increased. A qualitatively similar pattern of re-
sults can be observed in the right panel of Fig. 1, where the
integration coefficient, C_I(t), was measured [i.e., C_I(t)>1].
Because AV accuracy violated race model predictions and the
RT measure of C(t) was much greater than 1, it shows that AV
benefit under degraded listening conditions ismanifested through
enhancement of both speed and accuracy. Nonetheless, C_I(t)
results differ from C(t) in important ways. For the shorter RTs,
C(t) indicates supercapacity (>5 for the low S/N ratios). While
C_I(t) also suggests supercapacity for this same time range,
estimated capacity is lower (~2). Thus, C(t) shows that while
the AV RTs were much faster than model predictions, the
obtained AV accuracy moderated integration efficiency as esti-
mated by taking accuracy into account using C_I(t). These data
show a young, normal-hearing listener with efficient integration
in the RT domain but less efficient integration measured by
C_I(t) due to suboptimal gain in accuracy (Table 2). Contrast
this with an aging or hearing-impaired listener with poor

auditory- and visual-only recognition who may show substan-
tially higher gain in the accuracy domain (e.g., Bergeson &
Pisoni, 2004). Now, if such a listener were to take advantage of
AV processing speed similar to the listener in Fig. 1 (see
Winneke & Phillips, 2011), then C_I(t) might show greater
supercapacity than C(t). On the other hand, if the listener slows
down substantially on AV trials to achieve greater multisensory
accuracy,C_I(t) may take a hit. Overall, the newC_I(t) measure
can elucidate valuable quantitative information through the
addition of accuracy information that RT alone simply cannot.

Applications to sensory decline

In this section, we discuss predictions for integration efficiency
for listeners experiencing sensory decline.We focus particularly
on predictions related to speed and accuracy for aging popula-
tions, although similar predictions may be derived for other
clinical populations, such as individuals with cochlear implants.

Age-related decline in sensory and cognitive function, as well
as individual differences in sensory and cognitive ability, can
affect how listeners perceive information from auditory and
visual speech signals (e.g., Bergeson & Pisoni, 2004; Erber,
2002; Sommers et al., 2005; Winneke & Phillips, 2011). The
aging process adversely affects both auditory and visual func-
tioning. This is evidenced by poorer lip-reading skills in aging
participants, as compared with their younger counterparts
(Sommers et al., 2005; Winneke & Phillips, 2011), and by
difficulty in auditory-only speech perception as a result of age-
related hearing loss (e.g., Erber, 2002, 2003). Although the
effects of age-related sensory declines in each sensory modality
are well established, the influences of sensory functioning on

Table 2 Auditory-only and audiovisual (AV) accuracy scores for each
condition, with race model predictions for accuracy

S/N Ratio A-Only Obtained AV Race Model

Clear .98 .98 .99

−12 dB .69 .95* .90

−18 dB .36 .90* .80

Note. The “*” denotes an obtained accuracy level greater than race
model predictions.

Fig. 1 Traditional capacity coefficient (left) and integration assessment
measures (right) from a listener in a word identification task. Data are
shown across three different auditory S/N ratios, which can be used to

simulate sensory deficit. The symbols indicate the function values for a
specific auditory S/N ratio at a certain time point
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one’s ability to integrate auditory and visual speech signals is at
best ambiguous.

One reason for this ambiguity is that research has yielded
divergent conclusions regarding integration ability. This is par-
tially due to the fact that different studies have utilized different
dependent measures, with some studies relying only on accura-
cy (e.g., Sommers et al., 2005) and others relying on RTs
(Winneke & Phillips, 2011). Some studies that have compared
AV integration and visual gain (in terms of accuracy) in young
normal-hearing listeners with those in elderly adults have failed
to show evidence for superior multisensory speech recognition
in aging populations. Sommers et al. (2005) obtained accuracy
scores in older and younger adults and adjusted the auditory S/N
ratio individually to control for auditory recognition performance
across individuals and age groups. The participants subsequently
participated in recognition tasks using syllables, words, and
sentences involving auditory-only, visual-only, and AV trials.
The authors observed slightly poorer AV enhancement in aging
populations, possibly because older adults exhibited poorer visual-
only recognition skills, as compared with younger normal-hearing
individuals. Thus, older adults may benefit less from visual speech
information, as compared with younger listeners.

Conversely, some evidence suggests that the ability to ben-
efit from visual information may be superior in older listeners,
as compared with their younger normal-hearing counterparts
(e.g., Bergeson & Pisoni, 2004; Laurienti, Burdette, Maldjian,
& Wallace, 2006). In a review of the effect of aging on AV
speech integration, Bergeson and Pisoni provided evidence
showing that although unisensory function declines with age,
the ability to benefit from visual speech cues (e.g., place of
articulation; Grant et al., 1998) and combine them with degrad-
ed auditory information actually improves. AV enhancement
might be greater in older adults, particularly when auditory
recognition levels are not controlled across age groups. As is
shown in the example data, the ability to integrate auditory and
visual speech cues becomes especially important under difficult
sensory conditions. This is in line with the law of inverse
effectiveness: As auditory-only and visual-only recognition be-
come less effective, AV recognition improves relative to
unisensory recognition, likely due in part to the reduction of
ceiling effects (e.g., Altieri & Townsend, 2011; Laurienti et al.,
2006; Ross et al., 2007; Stein & Meredith, 1993).

Interestingly, a recent study using converging measures of
AV processing (RTs and ERPs) reported similar benefit in the
RT distributions across age groups. The data revealed violations
of Miller’s (e.g., 1982) upper bound on processing efficiency
and race model predictions (Winneke & Phillips, 2011). The
violation of that bound implies that the AV benefit, in terms of
speed, was greater than predicted by a substantial class of
parallel models. On the other hand, their analysis of the
N1/P1 ERP components did show important differences across
age groups. Both groups showed evidence for an AVamplitude
reduction. That is, the value of the AV peak was less than that of

the A + Vonly peak, suggesting interactions across modalities.
However, the degree of the reduction in the early sensory P1
component was significantly larger in older adults. The authors
argued that the findings were consistent with the hypothesis that
fewer neural resources were required to yield equivalent behav-
ioral performance in older adults.

Winneke and Phillips’s (2011) findings point to a contradic-
tion between neural and behavioral data. On the one hand, the
ERP data suggest more efficient use of neural resources in older
than in younger adults. On the other hand, the behavioral data
indicate identical or very similar AV enhancement across age
groups. In their study, the auditory S/N ratio was elevated for
elderly participants in order to equate auditory accuracy levels
with their younger counterparts (~85 %). This essentially meant
that more auditory cues were available, on average, for elderly
participants. The higher auditory clarity may have altered early
sensory coding in older participants, causing changes in very
early ERP. Thus, predictive visual information might not have
facilitated low-level early sensory encoding due to the increased
availability of auditory cues. One possible explanation for the
lack of evidence for improvement in the behavioral data is that
elderly participants might have lowered their decision criteria on
AV trials because the relative increase in availability of low- and
high-frequency auditory cues helped them benefit from visual
information (e.g., Erber, 2003; although see Ratcliff et al., 2004).
This may have helped them achieve a similar level of perfor-
mance to younger listeners in the RT domain.

The implementation of the C_I(t) and C(t) measures should,
in future studies, separate out the effects of speed and accuracy
on one’s ability to combine visual speech with auditory infor-
mation pertaining to manner, nasality, and vowels. Suppose we
equate auditory S/N ratio across age groups in a paradigm
similar to the detection design described in the previous section.
Elderly or hearing-impaired listeners should generally process
unisensory auditory and visual information less accurately, as
compared with younger listeners (e.g., Erber, 2003; Sommers
et al., 2005). However, if C_I(t) shows similar efficiency across
age groups, two testable predictions emerge:

1. Listeners may utilize more conservative decision criteria on
AV trials (in this case, slowing RTs) in order to achieve a
greater accuracy gain to equate performance. Hence, these
listeners may slow down on AV trials in order to benefit
from complementary cues; p(AV) should exceed race mod-
el predictions, although C(t) may show limitations.

2. Combined AV information facilitates processing in the
time domain. However, this would be done at the ex-
pense of accuracy. The C(t) analysis should indicate
greater or similar gain, as compared with younger lis-
teners, although the accuracy data should show less gain.

Given that RT data fit to diffusion models (e.g., Thapar
et al., 2003) have consistently pointed to more conservative
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decision strategy in elderly participants, we believe that the
first prediction is certainly possible for some listeners (al-
though cf. Winneke & Phillips, 2011). However,C_I(t) bears
implications and is a potential testing ground for all param-
eterized models, in addition to Ratcliff’s diffusion model.

Finally, C_I(t) may differ for aging versus younger partici-
pants depending on their history. A lower C_I(t) could be the
result of the inability to benefit in terms of speed and/or accu-
racy from visual speech cues. This situation may arise in very
low auditory S/N ratios and, especially, in older adults with a
high degree of hearing impairment because of the inability to
obtain low-frequency auditory speech information (Erber,
2003). Conversely, C_I(t) may reveal superior integration in
certain listeners if they benefit from the visual signal in terms of
speed (e.g., Laurienti et al., 2006), compensate in the accuracy
domain, or both. We predict that this situation may arise in
some older adults with progressive hearing loss and better lip-
reading ability who have extensive practice associating lip
movements with auditory vowel and consonant cues in order
to maintain efficient face-to-face communication skills.

Summary and conclusion

Recent studies have demonstrated a promising approach for
evaluating integration efficiency in populations with deficits
in sensory functioning (Altieri, 2011; Altieri & Townsend,
2011; Winneke & Phillips, 2011). The approach of assessing
integration efficiency can be significantly improved upon
by utilizing our nonparametric measure of integration
efficiency—C_I(t)—one that takes into account both accuracy
and RT in a single measure. We provided example data from a
closed set speech detection experiment to illustrate its utility. This
study simulated sensory decline by introducing changes
in auditory S/N ratio, and as was predicted, C_I(t) [and C(t)]
indicated significant enhancement in integration efficiency in
terms of speed and accuracy under diminished sensory func-
tioning (e.g., Ross et al., 2007; Stein & Meredith, 1993).
Future studies obtaining normative data may combine this
measure with open set sentence processing measures (e.g.,
Sommers et al., 2005) in order to obtain a converging estimate
of integration efficiency.

Taken together, the new integration assessment coeffi-
cient, C_I(t), can be used to capture both individual and
group differences in the ability to integrate multisensory
speech information simultaneously in terms of their accuracy
plus RTs. This approach will provide the speech research
community with a yardstick for assessing integration effi-
ciency by taking into account time-based and accuracy mea-
sures relative to parallel race model predictions.

Consider, for example, how some research indicates that
aging populations integrate speech information less efficiently
than do younger normal-hearing listeners (e.g., Sommers

et al., 2005). The combinedC_I(t), RT, and accuracy approach
introduced here can provide a more comprehensive diagnosis
the locus of such effects: (1) Does sensory decline associated
with aging contribute to a decline in sensitivity, mainly caus-
ing accuracy to take a hit, or (2) might there be higher level
changes (e.g., decision criteria) that contribute to changes in
AV processing rate as well? How does variability in listening
conditions covary with changes in integration efficiency
across age groups? Finally, the integration assessment func-
tion may reveal connections between brain signals and behav-
ior in both normal-hearing and aging populations.
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Appendix

% Example Matlab Code for C(t) and C_I(t)
% Clear Auditory Condition
clc; format short g;
t=0:10:3000; % Time vector in msec (MIN : bin size : MAX)
num=240; % number of trials per each condition
% ################# read data ####################
% Read in Data Vector: 720 trials
% Input data in Vector format
% #################################################
% dividing the trials into three conditions based on
%Presence/Absence
%Input Accuracy Levels for A, V, and AV:
A=.98; V=.69; AV=.98; % Example from Clear Auditory Cond.
rt1=data((1):num); % Auditory Only: 240 Trials
rt2=data((num+1):2*num); % Visual Only: 240 Trials
rt3=data((2*num+1):3*num); % Audiovisual: 240 Trials
% trim the data
rt1trim=rt1(rt1>100 & rt1<3000);
rt2trim=rt2(rt2>100 & rt2<3000);
rt3trim=rt3(rt3>100 & rt3<3000);
% estimating the functions
% nnz(rt#) gives the number of nonzero elements
f1=hist (rt1trim, t) / nnz(rt1trim); % Density
F1=cumsum (f1); % Cum. frequency
f2=hist (rt2trim, t) / nnz(rt2trim);
F2=cumsum (f2);
f3=hist (rt3trim, t) / nnz(rt3trim);
F3=cumsum (f3);
% Calculating capacity
C=log(1-F3) ./ (log(1-F2)+log(1-F1)); % C(t)
% Find the Capacity measures for correct Responses
F1NC=cumsum(f1)*A;
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F2NC=cumsum(f2)*V;
F3NC=cumsum(f3)*AV;
F1NCS=(1-cumsum(f1))*(A);
F2NCS=(1-cumsum(f2))*(V);
F3NCS=(1-cumsum(f3))*(AV);
CORII=log(F1NC*(1-V)+F2NC*(1-A)+
F1NC.*F2NCS+F2NC.*F1NCS+F1NC.*F2NC)./log(F3NC);
subplot(1,2,1)
hold on
scatter(t, C, 15, ‘filled’)
title2 ('Capacity coefficient, C(t)','FontSize',14,'FontWeight',
'bold')
xlabel ('RT (ms)','FontSize',14); ylabel ('C(t)','FontSize',16);
axis ([100 2500 0 5])
subplot(1,2,2)
hold on
scatter(t, CORII, 15, 'filled')
title ('Assessment Coefficient, A(t)','FontSize',14,'FontWeight',
'bold')
xlabel ('RT (ms)','FontSize',14); ylabel ('C(t)','FontSize',16);
axis ([100 2500 0 5])
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